Non può vivere bene chi non è in pace con il suo corpo.

Maria Raffaella Dalla Valle
IL DIARIO

martedì 18 aprile 2017

Mindful Movement, Skilled Attention and Feldenkrais Method (En)












We suggest that Feldenkrais (1947) pioneered a “contemplative” or “neurophenomenological” (Thompson et al., 2005) approach of disciplined first-person inquiry and third-person explanations in his attempt to understand human development via a neural information processing theory of movement. As with meditation (Lutz et al., 2007), rigorous first-person insights from movement practice provided Feldenkrais with insight and constraints on the kinds of representations and procedures that must be instantiated in the nervous system.

As such, we will in part rely on the ideas of Feldenkrais as a starting point for our discussion of the mechanisms of mindful movement practice below. We thereby do not intend to give a full account of mindful movement practices, but selectively evaluate how mindful movement may provide conditions for learning skills for attentional control. As with other skills, we propose that skilled control of attention requires inhibitory and excitatory associations between executive, sensory, and motoric representations that are coordinated within a repertoire of procedures. Critically, learning will generally occur in the context of existing, stable procedures, or “habits” that arose during development and adult life (Feldenkrais, 1947). Following Feldenkrais’ suggestion, we focus primarily on learning via differentiating novel sensorimotor skills within the landscape of sensorimotor dependencies rather than on the extinction of existing habits (for a similar view, see Barandiaran and Di Paolo, 2014; Di Paolo et al., 2014; for an account of extinction in mindfulness meditation, see Vago and Silbersweig, 2012).

 In summary, the theoretical construct of a repertoire of functional procedures and the rich characterization of stages and mechanisms of skill learning may be a novel and constructive application of concepts from the motor skill literature with broad applicability to more seemingly “cognitive” skills. Given our notion of attentional and executive control as higher-level skill processes within a sensorimotor network, we suggest that the exceptionally rich, stable sensory feedback generated by motor practice provides ideal conditions for the practitioner to develop skills for improved attentional and behavioral control. Hence, while our characterization of attentional and executive skill would imply that mindful movement practices and meditation target similar “learning outcomes,” movement practice may build executive procedures within functions of sensorimotor coordination as part of the movement exploration rather than via a process of FA meditation. Finally, the domain of movement may provide not only an effective opportunity for improving the functional coordination of movements, goals and attention, but also yield cleanly operationalized measures of improvements in performance of the trained motor skill—thus being highly amenable to empiric study.
Our central hypothesis is thus that mindful movement practice may improve executive and attentional control by providing opportunities for learning functional coordinations of goals and attention, and that this might be productively modeled as skill learning (Table (Table1).1). Specifically, learners likely refine the flexible coordination of inhibitory and excitatory associations organized within learned action sequences or procedures. Much as in the practice of other motor skills, learned attentional or executive skills may initially be “declarative” or “cognitive,” but with practice become proceduralized and ultimately automatized. At the neural level, we predict that this will—again, as with other motor skills—be reflected in rapid changes supported by subcortical structures, followed by consolidation at the cortical level (primarily in motor, prefrontal and posterior parietal regions), with a gradual decrease in prefrontal activation as attentional skill develops (Ungerleider et al., 2002; Robertson, 2009, provide neural accounts of motor skill learning) In a mature skill, functional procedures are automatically and efficiently engaged in appropriate contexts, which would also be observable as a gradual reduction in reaction times or reduction in error (Fitts and Posner, 1967; MacKay, 1982; Beilock and Carr, 2004). In the limit, however, “overlearned” skills become inflexible, and transfer to novel contexts is reduced (Karni et al., 1995; Bapi et al., 2006). While we propose multiple potential neural mechanisms below (all of which require further investigation), we also argue from a computational level that if gains from motor practice are to transfer to classroom behavior or laboratory tests of attentional control, then some part of what is learned must remain sufficiently abstract to apply across these various contexts. Formally, if higher-order skills are learned under conditions of variability and uncertainty, this may yield “structural” learning that facilitates sharing procedures across tasks. Following Marr (1982) this specification of a computational criterion—here, the structural learning of abstract, transferrable skills for attention and goal-based executive control—is a critically important (though often underdeveloped) component of our theory of attentional skill.
Leggi tutto il testo:

Nessun commento:

Posta un commento